Australian scientists have designed a 3D silicon chip architecture based on single atom quantum bits, which is compatible with atomic-scale fabrication techniques - providing a blueprint to build a large-scale quantum computer.
Scientists and engineers from the Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology (CQC2T), headquartered at the University of New South Wales (UNSW), are leading the world in the race to develop a scalable quantum computer in silicon - a material well-understood and favoured by the trillion-dollar computing and microelectronics industry.
Teams led by UNSW researchers have already demonstrated a unique fabrication strategy for realising atomic-scale devices and have developed the world's most efficient quantum bits in silicon using either the electron or nuclear spins of single phosphorus atoms. Quantum bits - or qubits - are the fundamental data components of quantum computers.
One of the final hurdles to scaling up to an operational quantum computer is the architecture. Here it is necessary to figure out how to precisely control multiple qubits in parallel, across an array of many thousands of qubits, and constantly correct for 'quantum' errors in calculations.
Now, the CQC2T collaboration, involving theoretical and experimental researchers from the University of Melbourne and UNSW, has designed such a device. In a study published today in Science Advances, the CQC2T team describes a new silicon architecture, which uses atomic-scale qubits aligned to control lines - which are essentially very narrow wires - inside a 3D design.
To read more, click here.