Scientists from Stanford University and the Department of Energy's SLAC National Accelerator Laboratory have made the first direct images showing that electrical currents can flow along the boundaries between tiny magnetic regions of a material that normally doesn't conduct electricity. The results could have major implications for magnetic memory storage.

"This can provide a more straightforward way to use magnetic material as memory," said Eric Yue Ma, a graduate student in the laboratory of Zhi-Xun Shen, the SLAC and Stanford professor who led the research. "Today you need to convert magnetic information into electrical information when reading magnetic memory, usually via multiple layers of different materials. But if you have both types of information within the material itself, you can skip that step."

The team has filed a provisional patent on the concept of using this phenomenon to make new types of sensors and very stable, high-density memory storage that can potentially go beyond the size limitations of current technologies. They report the results of their study today in the journal Science.

To read more, click here.