Cornell researchers have demonstrated a new strategy for making energy- efficient, reliable nonvolatile magnetic memory devices -- which retain information without electric power.

Reported online in the journal Science May 3, the researchers use a physical phenomenon called the spin Hall effect, that turns out to be useful for memory applications because it can switch magnetic poles back and forth -- the basic mechanism needed to make magnet-based computer memory.

The Cornell researchers discovered that the spin Hall effect in the metal tantalum can be twice as strong as in any material investigated previously, and it can provide an efficient new way to manipulate magnetic moments. The Cornell device could give the leading nonvolatile magnetic memory technology, called the magnetic tunnel junction, a run for its money.

To read more, click here.