There has been a surprise discovery of ‘significant’ refraction of gamma rays which opens the door to nuclear photonics and the use of high energetic light beams to investigate the atomic nucleus. Isotope specific gamma ray microscopes could remotely search for harmful nuclear materials or provide less destructive and more selective medical imaging.
Scientists at the Institut Laue-Langevin (ILL) have demonstrated for the first time that gamma rays, a highly energetic form of light produced by radioactive decay of atomic nuclei and amongst other used to kill cancer cells can be bent. In a new paper published in Physical Review Letters, the team used a version of the common classroom experiment with glass prisms, similar to the one employed by Newton in 1665, to find bending or 'refraction' at the highest energies ever recorded.
Their discovery overturns decades of theoretical predictions and opens the door to a new field of science called nuclear photonics. By bending and focusing the rays into concentrated beams, gamma ray microscopes could remotely scan for dangerous nuclear material in ships or trucks, monitor nuclear waste or provide selective, less destructive medical imaging for cancer diagnostics and treatment.
To read more, click here.