Metamaterials are artificially-structured materials with extraordinary properties not easily found in nature. With engineered three-dimensional (3D) geometries at the micro- and nanoscale, these architected materials achieve unique mechanical and physical properties with capabilities beyond those of conventional materials—and have emerged over the past decade as a promising way to engineering challenges where all other existing materials have lacked success.
Architected materials exhibit unique mechanical and functional properties, but their full potential remains untapped due to challenges in design, fabrication, and characterization. Improvements and scalability in this space could help transform a range of industries, from biomedical implants, sports equipment, automotive and aerospace, and energy and electronics.
"Advances in scalable fabrication, high-throughput testing, and AI-driven design optimization could revolutionize the mechanics and materials science disciplines, enabling smarter, more adaptive materials that redefine engineering and everyday technologies," says Carlos Portela, the Robert N. Noyce Career Development Professor and assistant professor of mechanical engineering at MIT.
In a Perspective published this month in the journal Nature Materials, Portela and James Surjadi, a postdoc in mechanical engineering, discuss key hurdles, opportunities, and future applications in the field of mechanical metamaterials. The paper is titled "Enabling three-dimensional architected materials across length scales and timescales."
"The future of the field requires innovation in fabricating these materials across length scales, from nano to macro, and progress in understanding them at a variety of time scales, from slow deformation to dynamic impact," says Portela, adding that it also demands interdisciplinary collaboration.
To read more, click here.