University of Missouri scientists are unlocking the secrets of halide perovskites—a material that's poised to reshape our future by bringing us closer to a new age of energy-efficient optoelectronics.
Suchi Guha and Gavin King, two physics professors in Mizzou's College of Arts and Science, are studying the material at the nanoscale: a place where objects are invisible to the naked eye. At this level, the extraordinary properties of halide perovskites come to life, thanks to the material's unique structure of ultra-thin crystals—making it astonishingly efficient at converting sunlight into energy.
Think solar panels that are not only more affordable but also far more effective at powering homes. Or LED lights that burn brighter and last longer while consuming less energy.
"Halide perovskites are being hailed as the semiconductors of the 21st century," said Guha, who specializes in solid-state physics. "Over the past six years, my lab has concentrated on optimizing these materials as a sustainable source for the next generation of optoelectronic devices."
To read more, click here.