Imagine using artificial intelligence to compare two seemingly unrelated creations — biological tissue and Beethoven’s “Symphony No. 9.” At first glance, a living system and a musical masterpiece might appear to have no connection. However, a novel AI method developed by Markus J. Buehler, the McAfee Professor of Engineering and professor of civil and environmental engineering and mechanical engineering at MIT, bridges this gap, uncovering shared patterns of complexity and order.
“By blending generative AI with graph-based computational tools, this approach reveals entirely new ideas, concepts, and designs that were previously unimaginable. We can accelerate scientific discovery by teaching generative AI to make novel predictions about never-before-seen ideas, concepts, and designs,” says Buehler.
The open-access research, recently published in Machine Learning: Science and Technology, demonstrates an advanced AI method that integrates generative knowledge extraction, graph-based representation, and multimodal intelligent graph reasoning.
To read more, click here.