Space-based telescopes are remarkable. Their view isn’t obscured by the weather in our atmosphere, and so they can capture incredibly detailed images of the heavens. Unfortunately, they are quite limited in mirror size. As amazing as the James Webb Space Telescope is, its primary mirror is only 6.5 meters in diameter. Even then, the mirror had to have foldable components to fit into the launch rocket. In contrast, the Extremely Large Telescope currently under construction in northern Chile will have a mirror more than 39 meters across. If only we could launch such a large mirror into space! A new study looks at how that might be done.

As the study points out, when it comes to telescope mirrors, all you really need is a reflective surface. It doesn’t need to be coated onto a thick piece of glass, nor does it need a big, rigid support structure. All that is just needed to hold the shape of the mirror against its own weight. As far as starlight is concerned, the shiny surface is all that matters. So why not just use a thin sheet of reflective material? You could just roll it up and put it in your launch vehicle. We could, for example, easily launch a 40-meter roll of aluminum foil into space.

Of course, things aren’t quite that simple. You would still need to unroll your membrane telescope back into its proper shape. You would also need a detector to focus the image upon, and you’d need a way to keep that detector in the correct alignment with the broadsheet mirror. In principle, you could do that with a thin support structure, which wouldn’t add an excessive bulk to your telescope. But even if we assume all of those engineering problems could be solved, you’d still have a problem. Even in the vacuum of space, the shape of such a thin mirror would deform over time. Solving this problem is the main focus of this new paper.

To read more, click here.