Lower cooling requirements, longer operating times, lower error rates: Quantum computers based on spin photons and diamond promise significant advantages over competing quantum computing technologies. The consortium of the BMBF project SPINNING coordinated by Fraunhofer IAF has succeeded in decisively advancing the development of spin-photon-based quantum computers. On October 22 and 23, 2024, the partners presented the interim project results at the mid-term meeting of the BMBF funding measure Quantum Computer Demonstration Setups in Berlin.
Solving complex problems in seconds that would take decades even for modern supercomputers -- that is the promise of quantum computers. However, as clear as the goal is, the path to it is still unclear. This is because there are still several competing approaches to realizing quantum computers. And each has specific advantages and disadvantages in terms of hardware and software, ranging from reliability and energy consumption to compatibility with conventional systems.
Under the coordination of the Fraunhofer Institute for Applied Solid State Physics IAF, a consortium of 28 partners is working on the project "SPINNING -- Diamond spin-photon-based quantum computer" to develop a quantum computer based on spin photons and diamond. This should be characterized by lower cooling requirements, longer operating times and lower error rates than other quantum computing approaches. The hybrid concept of the spin-photon-based quantum computer also provides for greater scalability and connectivity, which enables flexible connection with conventional computers.
To read more, click here.