Synthetic diamond is durable, inert, rigid, thermally conductive and chemically well-behaved—an elite material for both quantum and conventional electronics. But there's one problem. Diamond only likes diamond.

It's homoepitaxial, meaning it only grows on other diamonds, and integrating diamond into quantum or conventional computers, , cellphones, or other devices would mean sacrificing the diamond's full potential or using large, expensive chunks of the precious material.

"Diamond stands alone in terms of its material properties, both for electronics—with its wide band gap, very best thermal conductivity, and exceptional dielectric strength—and for quantum technologies—it hosts nitrogen vacancy centers that are the gold standard for quantum sensing at room temperature," said UChicago Pritzker School of Molecular Engineering (PME) Asst. Prof. Alex High. "But as a platform, it's actually pretty terrible."

A paper recently published in Nature Communications from UChicago PME's High Lab and Argonne National Laboratory has solved a major hurdle facing researchers working with diamond by creating a novel way of bonding diamonds directly to materials that integrate easily with either quantum or conventional electronics.

"We make a surface treatment to the diamond and carrier substrates that makes them very attractive to each other. And by ensuring we have a pristine surface roughness, the two very will be bonded together," said first author Xinghan Guo, who earned his Ph.D. from UChicago PME in the spring.

This is huge. The dawn of the diamond age.

To read more, click here.