A new study published in Nature Photonics by Prof. Yaron Bromberg and Dr. Ohad Lib from the Racah Institute of Physics at the Hebrew University of Jerusalem has made significant strides in advancing quantum computing through their research on photonic-measurement-based quantum computation. This method has the potential to overcome some of the significant challenges in quantum computation, offering a scalable and resource-efficient solution by utilizing high-dimensional spatial encoding to generate large cluster states.
Quantum computers currently encounter a major bottleneck in producing the large cluster states essential for computations. The conventional approach results in exponentially decreasing detection probabilities as the number of photons increases. Prof. Bromberg and Dr. Lib’s study tackles this problem by encoding multiple qubits within each photon using spatial encoding. This pioneering approach has successfully generated cluster states containing over nine qubits at a frequency of 100 Hz, marking a notable achievement in the field.
To read more, click here.