Einstein’s theory of gravity is a cornerstone of modern cosmology. It has been tested and proven correct over and over again and is supported by the discovery of countless cosmic phenomena: from the gravitational lensing detected by Arthur Eddington in 1919 and the anomalies observed in the orbit of Mercury, to galactic redshifts and gravitational waves. The theory of general relativity—to give Einstein’s theory of gravity its proper name—has precisely predicted them all.
But astronomical observations near the “cosmological horizon”—where the farthest galaxies recede from us at nearly the speed of light—suggest gravity may act differently at the very largest scales. Now, some scientists propose Einstein’s theory of gravity could be improved by adding a simple “footnote” to his equations, which amounts to a “cosmic glitch” in the scientific understanding of gravity.
Cosmologist Niayesh Afshordi is a senior author on a new research paper, published in the Journal of Cosmology and Astroparticle Physics, that describes this “cosmic glitch” model as an extension to Einstein’s gravitational theory. He and his colleagues suggest that their footnote would not only account for the observed large-scale discrepancies, but could also help ease other “tensions” in astronomy, where the predictions of the best theories don’t agree with astronomical observations—including the expansion rate of the universe and the abundance of superclusters of galaxies.
To read more, click here.