Researchers have developed a groundbreaking data-driven model to predict the dehydrogenation barriers of magnesium hydride (MgH2), a promising material for solid-state hydrogen storage. This advancement holds significant potential for enhancing hydrogen storage technologies, a crucial component in the transition to sustainable energy solutions.

Hydrogen, recognized for its versatility and clean energy potential, can be produced from various renewable sources. Solid-state hydrogen storage materials, particularly MgH2, are considered prime candidates for efficient hydrogen storage due to their high storage capacity and resource abundance. However, despite extensive research over the past five decades, the material properties of MgH2 have yet to meet the performance targets set by the US Department of Energy (US-DOE).

The key challenge lies in understanding the fundamental principles of solid-state hydrogen storage reactions. Current methods to assess the efficiency of hydrogen storage materials rely on dehydrogenation enthalpy and energy barriers, with the latter being particularly complex and computationally intensive to calculate. Traditional transition state search techniques, though refined over time, remain costly and time-consuming, limiting the pace of discovery and optimization.

To address this, the research team has introduced a model that predicts the dehydrogenation barriers using easily computable parameters: the crystal Hamilton population orbital of the Mg-H bond and the distance between atomic hydrogen atoms. By deriving a distance-energy ratio, the model captures the essential chemistry of the reaction kinetics with significantly lower computational demands than conventional methods.

To read more, click here.