The usual way of manufacturing synthetic diamonds involves applying huge pressures to carbon at high temperatures. Now, however, researchers at the Institute for Basic Science (IBS) in Korea have shown that while high temperatures are still a prerequisite, it is possible to make polycrystalline diamond film at standard pressures. The new technique could revolutionize diamond manufacturing, they say.
Natural diamonds form over billions of years in the Earth’s upper mantle at temperatures of between 900 and 1400 °C and pressures of 5–6 gigapascals (GPa). For the most part, the manufacturing processes used to make most synthetic diamonds mimic these conditions. In the 1950s, for example, scientists at General Electric in the US developed a way to synthesize diamonds in the laboratory using molten iron sulphide at around 7 GPa and 1600 °C. Although other researchers have since refined this technique (and developed an alternative known as chemical vapour deposition for making high-quality diamonds), diamond manufacturing largely still depends on liquid metals at high pressures and temperatures (HPHT).
A team led by Rodney Ruoff has now turned this convention on its head by making a polycrystalline diamond film using liquid metal at just 1 atmosphere of pressure and 1025 °C. When Ruoff and colleagues exposed a liquid alloy of gallium, iron, silicon and nickel to a mix of methane and hydrogen, they observed diamond growing in the subsurface of the liquid metal. The team attribute this effect to the catalytic activation of methane and the diffusion of carbons atoms in the subsurface region.
To read more, click here.