New research suggests that materials commonly overlooked in computer chip design actually play an important role in information processing, a discovery which could lead to faster and more efficient electronics. Using advanced imaging techniques, an international team led by Penn State researchers found that the material that a semiconductor chip device is built on, called the substrate, responds to changes in electricity much like the semiconductor on top of it.

The researchers worked with the semiconductor material, vanadium dioxide, which they said shows great potential as an electronic switch. They also studied how vanadium dioxide interacts with the substrate material titanium dioxide and said they were surprised to discover that there seems to be an active layer in the substrate that behaves similarly to the semiconductor material on top of it when the semiconductor switches between an insulator -- not letting electricity flow -- and a metal -- letting electricity flow. The revelation that substrates can play an active role in semiconductor processes is significant for designing future materials and devices, said study lead Venkatraman Gopalan, professor of materials science and engineering and of physics at Penn State.

"New ideas are needed for smaller and faster electronics in order to keep up with Moore's law," said Gopalan, the corresponding author of the study in Advanced Materials. "One idea being pursued is materials, such as vanadium dioxide, that can switch between metal -- the one state -- and insulator -- the zero state -- states in a trillionth of a second. This is known as undergoing metal-insulator transitions."

To read more, click here.