Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a programmable metafluid with tunable springiness, optical properties, viscosity and even the ability to transition between a Newtonian and non-Newtonian fluid.
The first-of-its-kind metafluid uses a suspension of small, elastomer spheres—between 50 to 500 microns—that buckle under pressure, radically changing the characteristics of the fluid. The metafluid could be used in everything from hydraulic actuators to program robots, to intelligent shock absorbers that can dissipate energy depending on the intensity of the impact, to optical devices that can transition from clear to opaque.
The research is published in Nature.
"We are just scratching the surface of what is possible with this new class of fluid," said Adel Djellouli, a Research Associate in Materials Science and Mechanical Engineering at SEAS and first author of the paper. "With this one platform, you could do so many different things in so many different fields."
To read more, click here.