A groundbreaking research breakthrough in solar energy has propelled the development of the world's most efficient quantum dot (QD) solar cell, marking a significant leap towards the commercialization of next-generation solar cells. This cutting-edge QD solution and device have demonstrated exceptional performance, retaining their efficiency even after long-term storage. Led by Professor Sung-Yeon Jang from the School of Energy and Chemical Engineering at UNIST, a team of researchers has unveiled a novel ligand exchange technique. This innovative approach enables the synthesis of organic cation-based perovskite quantum dots (PQDs), ensuring exceptional stability while suppressing internal defects in the photoactive layer of solar cells.
"Our developed technology has achieved an impressive 18.1% efficiency in QD solar cells," stated Professor Jang. "This remarkable achievement represents the highest efficiency among quantum dot solar cells recognized by the National Renewable Energy Laboratory (NREL) in the United States."
To read more, click here.