Given the hostile conditions of extraterrestrial environments, unmanned rovers play a critical role in the exploration of planets and moons. NASA's Mars and lunar exploration rovers have significantly contributed to our understanding of these extraterrestrial bodies. Planetary surfaces often present challenging landscapes with slopes, craters, and dunes. More importantly, the presence of regolith, fine particles that cover these surfaces, poses a significant challenge for rover mobility. The slipping of rovers on these loose surfaces can hinder their progress and even jeopardize their missions.
Various methods, primarily relying on visual data from cameras, have been explored to detect the traveling state or slip condition of rovers. However, these methods have limitations as they may struggle to differentiate between various terrain features such as distinguishing rocks from loose sand. A solution to this problem is for the rovers to obtain information about the traction on each wheel. This way, the rover could detect its traveling state faster and correct its posture to avoid slipping.
To realize this, Professor Kojiro Iizuka from the Department of Machinery and Control Systems of the College of Systems Engineering and Science at Shibaura Institute of Technology (SIT), Japan, and Dr. Kohei Inaba, also from SIT, have recently developed a novel system that allows a rover to detect its traveling state by the change in shape of its chassis. "Our inspiration came from how humans detect their own traveling state based on muscle tension while walking. We aimed to develop a similar system that recognizes the traveling state based on the chassis shape deformation," explains Prof. Iizuka. Their study was published in Volume 15, Issue 17 of the journal Remote Sensing on August 30, 2023.
To read more, click here.