The 'wonder material' graphene is well-known for its high electrical conductivity, mechanical strength, and flexibility. Stacking two layers of graphene with atomic layer thickness produces bilayer graphene, which possesses excellent electrical, mechanical, and optical properties. As such, bilayer graphene has attracted significant attention and is being utilized in a host of next-generation devices, including quantum computers.
But complicating their application in quantum computing comes in the form of gaining accurate measurements of the quantum bit states. Most research has primarily used low-frequency electronics to overcome this. However, for applications that demand faster electronic measurements and insights into the rapid dynamics of electronic states, the need for quicker and more sensitive measurement tools has become evident.
Now, a group of researchers from Tohoku University have outlined improvements to radio-frequency (rf) reflectometry to achieve a high-speed readout technique. Remarkably, the breakthrough involves the use of graphene itself.
To read more, click here.