"I hope you'll make black holes," Stephen said with a broad smile.
We exited the cargo lift that had taken us underground into the five-story cavern housing the ATLAS experiment at the CERN lab, the legendary European Organization for Nuclear Research near Geneva. CERN's director general, Rolf Heuer, shuffled his feet uneasily. This was 2009, and someone had filed a lawsuit in the United States, concerned that CERN's newly constructed Large Hadron Collider, the LHC, would produce black holes or another form of exotic matter that could destroy Earth.
The LHC is a ring-shaped particle accelerator that was built, principally, to create Higgs bosons, the missing link — at the time — in the Standard Model of particle physics. Constructed in a tunnel underneath the Swiss-French border, its total circumference is 27 kilometers (almost 17 miles), and it accelerates protons and antiprotons running in counter rotating beams in its circular vacuum tubes to 99.9999991% of the speed of light. At three locations along the ring, the beams of accelerated particles can be directed into highly energetic collisions, re-creating conditions comparable to those reigning in the universe a small fraction of a second after the hot big bang, when the temperature was more than a million billion degrees. The tracks of the spray of particles created in these violent head-on collisions are picked up by millions of sensors stacked like mini–Lego blocks to make up giant detectors, including the ATLAS detector and the Compact Muon Solenoid, or CMS.
To read more, click here.