The time-honored Edisonian trial-and-error process of discovery is slow and labor-intensive. This hampers the development of urgently needed new technologies for clean energy and environmental sustainability, as well as for electronics and biomedical devices.
"It usually takes 10 to 20 years to discover a new material," said Yanliang Zhang, associate professor of aerospace and mechanical engineering at the University of Notre Dame.
"I thought if we could shorten that time to less than a year -- or even a few months -- it would be a game changer for the discovery and manufacturing of new materials."
Now Zhang has done just that, creating a novel 3D printing method that produces materials in ways that conventional manufacturing can't match. The new process mixes multiple aerosolized nanomaterial inks in a single printing nozzle, varying the ink mixing ratio on the fly during the printing process. This method -- called high-throughput combinatorial printing (HTCP) -- controls both the printed materials' 3D architectures and local compositions and produces materials with gradient compositions and properties at microscale spatial resolution.
His research was just published in Nature.
To read more, click here.