For the last six years, Indiana University researchers and collaborators from around the world have sought to answer important questions about the most basic laws of physics that govern our universe. Their experiment, the Majorana Demonstrator, has helped to push the horizons on research concerning one of the fundamental building blocks of the universe: neutrinos.
The experiment's final report was published in Physical Review Letters in February.
Neutrinos -- subatomic particles similar to an electron but that have no electric charge -- are the second most abundant particles in the universe after light. However, they are some of the hardest particles to measure because they do not interact the way other particles do.
"Neutrinos have a profound impact on the universe and physics at every imaginable scale, surprising us down at the particle interaction level and having broad impact up through the cosmic scales," said Walter Pettus, an assistant professor of physics in the IU College of Arts and Sciences. "But they are also the most frustrating to study because we know so much about them, yet we have so many gaps."
The Majorana Demonstrator, a collaboration of 60 researchers from 24 institutions, was designed to fill many of those gaps at the same time, probing into the most fundamental properties of neutrinos.
To read more, click here.