If you know the atoms that compose a particular molecule or solid material, the interactions between those atoms can be determined computationally, by solving quantum mechanical equations — at least, if the molecule is small and simple. However, solving these equations, critical for fields from materials engineering to drug design, requires a prohibitively long computational time for complex molecules and materials.
Now, researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and the University of Chicago’s Pritzker School of Molecular Engineering (PME) and Department of Chemistry have explored the possibility of solving these electronic structures using a quantum computer.
The research, which uses a combination of new computational approaches, was published online in the Journal of Chemical Theory and Computation ("Quantum Simulations of Fermionic Hamiltonians with Efficient Encoding and Ansatz Schemes"). It was supported by Q-NEXT, a DOE National Quantum Information Science Research Center led by Argonne, and by the Midwest Integrated Center for Computational Materials (MICCoM).
“This is an exciting step toward using quantum computers to tackle challenging problems in computational chemistry,” said Giulia Galli, who led the research with Marco Govoni, a staff scientist at Argonne and member of the UChicago Consortium for Advanced Science and Engineering (CASE).
To read more, click here.