The battle over the heft of a hard-to-detect particle is heating up. What’s at stake? Only the leading theory describing all known matter in the universe.
A recalculation of the mass of an elementary particle, the W boson, has increased the tension between measurements from competing particle collider experiments. The ultimate outcome could bolster the standard model of particle physics, which describes the fundamental forces and quantum bits that make up everything we see in the cosmos. Or it could reveal signs of the standard model’s breakdown, depending on which lab’s answer prevails.
A reanalysis of old data from the Large Hadron Collider’s ATLAS experiment yields a W boson mass of about 80,360 million electron volts, or MeV. Researchers with the experiment, at CERN in Geneva, reported the measurement March 23 at the Rencontres de Moriond conference in La Thuile, Italy. The revised value is closely aligned with predictions from the standard model.
It also boasts reduced uncertainty from the researchers’ previous analysis of the data, which they reported in 2018, increasing their confidence that they got the mass right.
But the updated mass is at odds with that of another group. In 2022, scientists from the Collider Detector at Fermilab, or CDF, experiment shocked the physics community with a measurement of 80,434 MeV — about 100 MeV heavier than expected (SN: 4/7/22). If the CDF report is correct, it implies that something is off with the standard model that has persevered in the face of every experimental challenge thrown at it over the last 50 years.
To read more, click here.