The universe is peppered with galaxies, which, on large scales, exhibit a filamentary pattern, referred to as the cosmic web. This heterogeneous distribution of cosmic material is in some ways like blueberries in a muffin where material clusters in certain areas but may be lacking in others.

Based on a series of simulations, researchers have begun to probe the heterogeneous structure of the universe by treating the distribution of galaxies as a collection of points—like the individual particles of matter that make up a material—rather than as a continuous distribution. This technique has enabled the application of mathematics developed for materials science to quantify the relative disorder of the universe, enabling a better understanding of its fundamental structure.

“What we found was that the distribution of galaxies in the universe is quite different from the physical properties of conventional materials, having its own unique signature,” explained Oliver Philcox, a co-author of the study.

 This work, now published in Physical Review X, was conducted by Salvatore Torquato, frequent Member and Visitor at the Institute for Advanced Study and Lewis Bernard Professor of Natural Sciences based in Princeton University’s departments of chemistry and physics; and Oliver Philcox a visiting Ph.D. student at the Institute from September 2020 to August 2022, now a Junior Fellow in the Simons Society of Fellows, hosted at Columbia University.
 

To read more, click here.