A new RMIT-led international collaboration published in February has uncovered, for the first time, a distinct disorder-driven bosonic superconductor-insulator transition.
The discovery outlines a global picture of the giant anomalous Hall effect and reveals its correlation with the unconventional charge density wave in the AV3Sb5 kagome metal family, with potential applications in future ultra-low energy electronics.
Superconductors, which can transmit electricity without energy dissipation, hold great promise for the development of future low-energy electronics technologies, and are already applied in diverse fields such as hover trains and high-strength magnets (such as medical MRIs).
However, precisely how the superconductivity forms and works in many materials remains an unsolved issue and limits its applications.
Recently, a new kagome superconductor family AV3Sb5 has attracted intensive interest for their novel properties. 'Kagome' materials feature an unusual lattice named for a Japanese basket-weave pattern with corner-sharing triangles.
To read more, click here.