From 2019 to 2021, the US astronomy community was engaged in a planning exercise for the coming decade and beyond. The result of that effort is the decadal survey Pathways to Discovery in Astronomy and Astrophysics for the 2020s. Commonly known as Astro2020, it envisages an ambitious set of new “Great Observatories” as the community’s top priority.1 (Each of the authors is closely associated with one of the observatories endorsed by Astro2020.) The new Great Observatories, some of which are shown in figure 1, would collect measurements that span the electromagnetic spectrum, from far-IR to x rays, with orders-of-magnitude gain in capabilities over their renowned predecessors—the Spitzer Space Telescope, the Hubble Space Telescope, the Compton Gamma-Ray Observatory, and the Chandra X-Ray Observatory.
 
To keep within the NASA astrophysics budget, however, their launch dates have been pushed to the 2040s and 2050s, a forbidding timeline. A newly minted PhD today will be barely a decade from retirement by the time even the first of the observatories launches. The unwelcome implication is that there likely will be a decade-scale gap in flagship capabilities at all wavelengths in the 2030s to the detriment of science and of NASA’s technological leadership.
 
Astro2020 took place against a rather static background of space capabilities. Yet from late 2020, SpaceX has been developing an enormous and fully reusable launch system known as Starship, which consists of the Starship upper stage and the Super Heavy booster stage. The Super Heavy hasn’t flown yet, although Starship underwent dramatic progress, from early tests that resulted in multiple explosions—known tongue-in-cheek as “rapid unscheduled disassemblies”—to a successful high-altitude test flight and soft landing by mid 2021. Studies of the largest flagship missions that NASA commissioned took three years and were completed by 2019. The unfortunate timing meant that the capabilities of Starship could be only briefly considered in the Astro2020 deliberations.
 
Assuming it is successful, Starship will dramatically enhance our space capabilities in ways that will qualitatively alter how astrophysics missions can be built. The capabilities for planetary science missions in our solar system are discussed in the Origins, Worlds, and Life report, which emphasizes that Starship can accelerate the NASA planetary program.2 This paper discusses the parallel opportunities for astrophysics.
 

To read more, click here.