We live in a digital age. Gone are the days of room-sized computers made from thousands of tubes or mechanical gears—and long gone are the ancient Roman days of the very first analog computers. But in the world of quantum computing, analog is alive and well. In fact, analog is one of the three major categories of quantum computers, and some of the world’s biggest companies have constructed analog creations.
But researchers from Stanford University and University College Dublin (UCD) developed a novel approach to constructing these machines by creating bespoke quantum computers with quantum components designed to solve specific questions. These aren’t room-sized machines like Charles Babbages’ 19th century creations; instead, they consist of hybrid metal-semiconductors on a nanoelectronic circuit. Essentially, the computers are measured in microns—not meters—and are called “quantum simulators.” A new paper published in inNature Physics details the simulators in full.
“We’re always making mathematical models that we hope will capture the essence of phenomena we’re interested in,” Stanford researcher Goldhaber-Gordon said in a statement, “but even if we believe they’re correct, they’re often not solvable in a reasonable amount of time. [With a Quantum Simulator] we have these knobs to turn that no one’s ever had before.”
To read more, click here.