Have you ever been faced with a problem where you had to find an optimal solution out of many possible options, such as finding the quickest route to a certain place, considering both distance and traffic?
If so, the problem you were dealing with is what is formally known as a "combinatorial optimization problem." While mathematically formulated, these problems are common in the real world and spring up across several fields, including logistics, network routing, machine learning, and materials science.
However, large-scale combinatorial optimization problems are very computationally intensive to solve using standard computers, making researchers turn to other approaches. One such approach is based on the "Ising model," which mathematically represents the magnetic orientation of atoms, or "spins," in a ferromagnetic material.
To read more, click here.