Researchers have uncovered a brand-new technique for correcting errors in quantum computer calculations, potentially eliminating a significant barrier to a powerful new field of computing.
Error correction is a well-developed subject in traditional computers. To transmit and receive data over messy airwaves, every cellphone requires checks and adjustments. Quantum computers have immense potential to tackle complicated problems that conventional computers cannot, but this capacity is dependent on harnessing the incredibly fleeting behavior of subatomic particles. These computing behaviors are so ephemeral that even inspecting them for flaws might cause the whole system to collapse.
An interdisciplinary team led by Jeff Thompson, an associate professor of electrical and computer engineering at Princeton University, and collaborators Yue Wu and Shruti Puri at Yale University and Shimon Kolkowitz at the University of Wisconsin-Madison, demonstrated in a theoretical paper published in Nature Communications that they could dramatically improve a quantum computer’s tolerance for faults and reduce the amount of redundant information needed to isolate and fix errors. The new approach quadruples the acceptable error rate, from 1% to 4%, making it practical for quantum computers currently under development.
To read more, click here.