In her research on bone tissue engineering, Dr. Marta Cerruti has worked for years with graphene, a single sheet of carbon atoms with incredible properties—electrical conductivity and the ability to support tremendous weight. Now, her quest to improve its qualities has opened the door to a possible solution to one of the challenges of producing hydrogen from seawater.
Cerruti, a professor of materials engineering at McGill University, explained that while graphene is structurally sound, "one sheet of atoms is not something you can easily work with." In fact, piling the sheets up results in, basically, pencil lead.
Searching for a way to make an easy-to-handle structure, Cerruti's Ph.D. student Yiwen Chen combined graphene with oxygen in a suspension with water to create reduced graphene oxide (GO), a porous, three-dimensional, electrically conductive scaffold. Cerruti suggested a further modification, with GO flakes stacked on the pore walls, "which allowed us to exploit another interesting property of GO—it creates a membrane that allows water through but no other molecules."
When she canvassed her team for suggestions on how best to test the new scaffold, Gabriele Capilli, a post-doctoral fellow in her lab, suggested seawater electrolysis, a process similar to others he worked on while doing his Ph.D. It turns out the new GO "selective scaffold" has the potential to improve the process of producing hydrogen from the ocean. The team's findings were published recently in the journal ACS Nano.
To read more, click here.