Topology and entanglement are two powerful principles for characterizing the structure of complex quantum states. In a new paper in the journal Physical Review X, researchers from the University of Pennsylvania establish a relationship between the two.
"Our work ties two big ideas together," says Charles Kane, the Christopher H. Browne Distinguished Professor of Physics in Penn's School of Arts & Sciences. "It's a conceptual link between topology, which is a way of characterizing the universal features that quantum states have, and entanglement, which is a way in which quantum states can exhibit non-local correlations, where something that happens in one point in space is correlated with something that happens in another part in space. What we've found is a situation where those concepts are tightly intertwined."
To read more, click here.