Room-temperature superconductors could transform everything from electrical grids to particle
accelerators to computers, but researchers are still trying to understand how these materials function on the atomic level.
Recently, NC State physicist Lex Kemper was a member of an international team that published a paper in Science on the unique properties of a material called yttrium barium copper oxide, or YBCO.
The team found that YBCO’s superconductivity is intertwined in unexpected ways with another phenomenon known as charge density waves (CDWs), or ripples in the density of electrons in the material. These CDWs get stronger when YBCO’s superconductivity is switched off. However, they were surprised to find the CDWs also suddenly became more spatially organized, suggesting superconductivity somehow fundamentally shapes the form of the CDWs at the nanoscale.
So what does this mean? The Abstract asked Kemper to share his insights.
To read more, click here.