Lithium-ion batteries are currently the preferred technology to power electric vehicles, but they're too expensive for long-duration grid-scale energy storage systems, and lithium itself is becoming more challenging to access.
While lithium does have many advantages -- high energy density and capacity to be combined with renewable energy sources to support grid-level energy storage -- lithium carbonate prices are at an all-time high. Contributing to the rising cost are pandemic-related supply-chain bottlenecks, the Russia-Ukraine conflict and increased demand from businesses. Additionally, many governments are hesitant to green light lithium mines because of the high environmental costs and the potential of human rights violations.
As governments and industries all over the world are eager to find energy storage options to power the clean energy transition, new research conducted at the University of Houston and published in Nature Communications suggests ambient temperature solid-state sodium-sulfur battery technology as a viable alternative to lithium-based battery technology for grid-level energy storage systems.
Yan Yao, Cullen Professor of Electrical and Computer Engineering, and his colleagues developed a homogeneous glassy electrolyte that enables reversible sodium plating and stripping at a greater current density than previously possible.
To read more, click here.