Computational detective work by U.S. and German physicists has confirmed that cerium zirconium pyrochlore is a 3D quantum spin liquid.

Despite the name, quantum spin liquids are solid materials in which quantum entanglement and the geometric arrangement of atoms frustrate the natural tendency of electrons to magnetically order themselves in relation to one another. The in a quantum spin liquid is so severe that electrons fluctuate between quantum magnetic states no matter how cold they become.

Theoretical physicists routinely work with quantum mechanical models that manifest quantum spin liquids, but finding convincing evidence that they exist in actual physical materials has been a decades-long challenge. While a number of 2D or 3D materials have been proposed as possible quantum spin liquids, Rice University physicist Andriy Nevidomskyy has said there's no established consensus among physicists that any of them qualify.

Nevidomskyy is hoping that will change based on the computational sleuthing he and colleagues from Rice, Florida State University and the Max Planck Institute for Physics of Complex Systems in Dresden, Germany, published this month in the open-access journal npj Quantum Materials.

To read more, click here.