Scientists are exploring new ways to artificially stack two-dimensional (2D) materials, introducing so-called 2.5D materials with unique physical properties. Researchers in Japan reviewed the latest advances and applications of 2.5D materials in the journal Science and Technology of Advanced Materials.

"The 2.5D concept symbolizes freedom from the composition, materials, angles and space typically used in 2D ," explains nanomaterials scientist and lead author Hiroki Ago of Kyushu University in Japan.

2D materials, like graphene, consist of a single layer of atoms and are used in applications like flexible touch panels, integrated circuits and sensors.

Recently, new methods have been introduced to make it possible to artificially stack 2D materials vertically, in-plane or at twisted angles regardless of their compositions and structures. This is thanks to the ability to control the van der Waals forces: weak electric interactions between atoms and molecules, similar to a microfiber cloth's attraction of dust. It is also now possible to integrate 2D materials with other dimensional materials, such as ions, nanotubes and bulk crystals.

To read more, click here.