Research at Lund University in Sweden has found a new way to create nano-sized magnetic particles using ultrafast laser light pulses. The discovery could pave the way for new and more energy-efficient technical components and become useful in the quantum computers of the future.
Magnetic skyrmions are sometimes described as magnetic vortices. Unlike ferromagnetic states—which occur in conventional magnets such as compasses and refrigerator magnets—the skyrmion state is quite peculiar: the orientation of the magnetization does not point in the same direction everywhere in the material, but is instead best described as a kind of swirling magnetism.
Skyrmions are of great interest to both basic research and industry, as they can be used to manufacture more compact computer memories. However, that is easier said than done. Using skyrmions for technical purposes requires efficient ways of writing, erasing and manipulating the particles on short time scales, and with high spatial precision.
In a new study published in npj Computational Materials, researchers Claudio Verdozzi from Lund University and Emil Viñas Boström and Angel Rubio from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg have found a new approach.
To read more, click here.