A team of researchers from University of Toronto Engineering and Rice University have reported the first measurements of the ultra-low-friction behavior of a material known as magnetene. The results point the way toward strategies for designing similar low-friction materials for use in a variety of fields, including tiny, implantable devices.
Magnetene is a 2D material, meaning it is composed of a single layer of atoms. In this respect, it is similar to graphene, a material that has been studied intensively for its unusual properties—including ultra-low friction—since its discovery in 2004.
"Most 2D materials are formed as flat sheets," says Ph.D. candidate Peter Serles, who is the lead author of the new paper published today in Science Advances.
"The theory was that these sheets of graphene exhibit low friction behavior because they are only very weakly bonded, and slide past each other really easily. You can imagine it like fanning out a deck of playing cards: it doesn't take much effort to spread the deck out because the friction between the cards is really low."
To read more, click here.