The development of an ultrathin magnet that operates at room temperature could lead to new applications in computing and electronics—such as high-density, compact spintronic memory devices—and new tools for the study of quantum physics.
The ultrathin magnet, which was recently reported in the journal Nature Communications , could make big advances in next-gen memories, computing, spintronics, and quantum physics. It was discovered by scientists at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley.
"We're the first to make a room-temperature 2-D magnet that is chemically stable under ambient conditions," said senior author Jie Yao, a faculty scientist in Berkeley Lab's Materials Sciences Division and associate professor of materials science and engineering at UC Berkeley.
"This discovery is exciting because it not only makes 2-D magnetismpossible at room temperature, but it also uncovers a new mechanism to realize 2-D magnetic materials," added Rui Chen, a UC Berkeley graduate student in the Yao Research Group and lead author on the study."
To read more, click here.