Quantum computers can now simulate much larger quantum systems than was previously thought possible thanks to algorithms developed by researchers in the UK and Germany. The new algorithms divide up quantum computational resources according to which parts of the simulation require them most, making it possible to extract information about a large quantum system from many smaller, more manageable calculations – in effect, running the simulation in parallel. The result should boost the capabilities of the current generation of so-called noisy intermediate scale quantum (NISQ) computers, which lack the computational resources required to perform useful algorithms in materials science or drug discovery, both of which depend heavily on a deep understanding of quantum effects.
Quantum computers promise to perform complex calculations today’s classical supercomputers cannot. A bottleneck for achieving such a “quantum advantage” is that it is very difficult to engineer a large, error-free quantum computer. While upgrading the quantum technologies themselves might seem like the obvious solution, it is also possible to improve the algorithms that run on such computers – for example, by changing the way thinformation.
To read more, click here.