Physicists from across three continents report the first experimental evidence to explain the unusual electronic behavior behind the world’s thinnest superconductor, a material with myriad applications because it conducts electricity extremely efficiently. In this case, the superconductor is only an atomic layer thick.
The work, led by an MIT professor and a physicist at Brookhaven National Laboratory, was possible thanks to new instrumentation available at only a few facilities in the world. The resulting data could help guide the development of better superconductors. These in turn could transform the fields of medical diagnostics, quantum computing, and energy transport, which all use superconductors.
The subject of the work belongs to an exciting class of superconductors that become superconducting at temperatures an order of magnitude higher than their conventional counterparts, making them easier to use in applications. Conventional superconductors only work at temperatures around 10 kelvins, or -442 degrees Fahrenheit.
These so-called high-temperature superconductors, however, are still not fully understood. “Their microscopic excitations and dynamics are essential to understanding superconductivity, yet after 30 years of research, many questions are still very much open,” says Riccardo Comin, the Class of 1947 Career Development Assistant Professor of Physics at MIT. The new work, which was reported recently in Nature Communications, helps answer those questions.
To read more, click here.