Superconductors' unique property of zero resistance can revolutionize power transmission and transport. However, most conventional superconductors require cooling to extremely low temperatures that can only be achieved with liquid helium, an expensive coolant. Materials scientists are now investigating high-temperature superconductors (HTSs) that can be cooled to a superconducting state by using the significantly cheaper liquid nitrogen, which has a remarkably higher temperature than liquid helium.
Currently, a prospective HTS material for such an exploration is (RE)Ba2Cu3Oy, RE-123, where RE stands for rare earth elements such as yttrium (Y), gadolinium (Gd), erbium (Er), neodymium (Nd), or europium (Eu). These materials in the single-crystalline form are able to overcome physical constraints that weaken superconductivity, thereby opening doors to a variety of engineering applications.
In a recent study published in the Journal of Alloys and Compounds, a team of scientists from Shibaura Institute of Technology, Japan, led by Prof. Muralidhar Miryala, a pioneer in the area of HTS, developed single-crystalline bulk superconductors that can trap magnetic fields within them in a manner similar to how ferromagnets (iron, nickel, cobalt) retain the magnetic field. "The trapped field is one of the most relevant parameters in many practical applications of bulk RE-123 and is related to the bulk diameter," explains Prof. Miryala.
To read more, click here.