Soldiers, athletes, and motorists could lead safer lives thanks to a new process that could lead to more efficient and re-useable protection from shock and impact, explosion, and vibration, according to a new study.
Pressurized insertion of aqueous solutions into water-repellent nanoporous materials, such as zeolites and metal-organic frameworks, could help to create high-performance energy absorbing systems.
An international research team experimented with hydrothermally stable zeolitic imidazolate frameworks (ZIFs) with a 'hydrophobic' cage-like molecular structure—finding that such systems are remarkably effective energy absorbers at realistic, high-rate loading conditions, and this phenomenon is associated with the water clustering and mobility in nanocages.
Researchers from the Universities of Birmingham and Oxford, together with Ghent University, Belgium, published their findings today in Nature Materials.
To read more, click here.