Nobel laureate Herbert Kroemer once famously asserted "The interface is the device." The observations by the Sydney researchers could therefore spark a new debate on whether interfaces—which are physical boundaries separating different regions in materials—are a viable solution to the unreliability of next-generation devices.

"Our discovery has indicated that interfaces could actually speed up ferroelectric degradation. Therefore, better understanding of these processes is needed to achieve the best performance of devices," Dr. Chen said.

Ferroelectric materials are used in many devices, including memories, capacitors, actuators and sensors. These devices are commonly used in both consumer and industrial instruments, such as computers, medical ultrasound equipment and underwater sonars.

Over time, are subjected to repeated mechanical and electrical loading, leading to a progressive decrease in their functionality, ultimately resulting in failure. This process is referred to as 'ferroelectric fatigue."

It is a main cause of the failure of a range of , with discarded electronics a leading contributor to e-waste. Globally, tens of millions of tons of failed electronic devices go to landfill every year.

Using advanced in-situ electron microscopy, the School of Aerospace, Mechanical and Mechatronic Engineering researchers were able to observe ferroelectric fatigue as it occurred. This technique uses an advanced microscope to 'see," in real-time, down to the nanoscale and atomic levels.

The researchers hope this new observation, described in a paper published in Nature Communications, will help better inform the future design of ferroelectric nanodevices.

To read more, click here.