An international team of scientists has invented the equivalent of body armour for extremely fragile quantum systems, which will make them robust enough to be used as the basis for a new generation of low-energy electronics.
The scientists applied the armour by gently squashing droplets of liquid metal gallium onto the materials, coating them with gallium oxide.
Protection is crucial for thin materials such as graphene, which are only a single atom thick—essentially two-dimensional (2-D) – and so are easily damaged by conventional layering technology, said Matthias Wurdack, who is the lead author of the group's publication in Advanced Materials.
"The protective coating basically works like a body armour for the atomically-thin material, it shields against high-energy particles, which would cause a large degree of harm to it, while fully maintaining its optoelectronic properties and its functionality," said Mr Wurdack, a Ph.D. student in the Nonlinear Physics Centre (NLPC) of the Research School of Physics, and the FLEET ARC Centre of Excellence.
To read more, click here.