Researchers at the Department of Energy’s Oak Ridge National Laboratory and the University of Tennessee, Knoxville have pioneered a new technique for forming a two-dimensional, single-atom sheet of two different materials with a seamless boundary.
The study, published in the journal Science, could enable the use of new types of 2-D hybrid materials in technological applications and fundamental research.
By rethinking a traditional method of growing materials, the researchers combined two compounds -- graphene and boron nitride -- into a single layer only one atom thick. Graphene, which consists of carbon atoms arranged in hexagonal, honeycomb-like rings, has attracted waves of attention because of its high strength and electronic properties.
“People call graphene a wonder material that could revolutionize the landscape of nanotechnology and electronics,” ORNL’s An-Ping Li said. “Indeed, graphene has a lot of potential, but it has limits. To make use of graphene in applications or devices, we need to integrate graphene with other materials.”
To read more, click here.