Quantum entanglement is one of the more bizarre theories to come out of the study of quantum mechanics—so strange, in fact, that Albert Einstein famously referred to it as “spooky action at a distance.”
Essentially, entanglement involves two particles, each occupying multiple states at once, for example simultaneously spinning clockwise and counterclockwise. But neither has a definite state until one is measured, causing the other particle to instantly assume a corresponding state. The resulting correlations between the particles are preserved even if they reside on opposite ends of the universe.
But what enables particles to communicate instantaneously—seemingly faster than the speed of light—over such vast distances?
Now an MIT physicist looking at entanglement through the lens of string theory has proposed an answer: the creation of two entangled quarks—the building blocks of matter—simultaneously gives rise to a wormhole connecting the pair.
The theoretical results bolster the relatively new and exciting idea that the laws of gravity holding together the universe may not be fundamental but arise instead from quantum entanglement.
To read more, click here.