Inexpensive computers, cell phones and other systems that substitute flexible plastic for silicon chips may be one step closer to reality, thanks to research published on April 16 in the journal Nature Communications.
The paper describes a new proposal by University of Iowa researchers and their colleagues at New York University for overcoming a major obstacle to the development of such plastic devices -- the large amount of energy required to read stored information.
Although it is relatively cheap and easy to encode information in light for fiber optic transmission, storing information is most efficiently done using magnetism, which ensures information will survive for years without any additional power.
"So a critical issue is how to convert information from one type to another," says Michael Flatté, professor of physics and astronomy in the College of Liberal Arts and Sciences (CLAS) and director of the UI Optical Science and Technology Center.
"Although it does not cost a lot of energy to convert one to the other in ordinary, silicon-chip-based computers, the energy cost is very high for flexible, plastic computing devices that are hoped to be used for inexpensive "throwaway" information processors.
"Here we show an efficient means of converting information encoded in magnetic storage to light in a flexible plastic device," says Flatté, who also serves as professor in the UI College of Engineering's Department of Electrical and Computer Engineering.
To read more, click here.