Can current theories of cosmology explain how the Universe evolved? One way to find out is to plug everything we think we know about the early Universe and how galaxies form into a supercomputer, and see what comes out. In a simulation presented today in Nature, researchers did just that — and revealed a cosmos that looks rather like our own. The findings lend weight to the standard model of cosmology, but could also help physicists to probe where our models of galaxy formation fall down.

Mark Vogelsberger, a physicist at the Massachusetts Institute of Technology in Cambridge, and his colleagues created a model of the Universe that follows the evolution of both visible and dark matter starting just 12 million years after the Big Bang (see video). While previous models have either been small and detailed or large and coarse, this simulation covers a region of space big enough to be representative of the whole Universe — a cube 106.5 megaparsecs (350 million light years) across — but is detailed enough to resolve small-scale structures, such as individual galaxies. Unlike previous simulations, it produces a mixture of galaxy shapes that fit observations well. Its also accurately recreates the large-scale distribution of galaxy clusters and neutral gas in the Universe, as well as the hydrogen and heavy element content of galaxies.

To read more and view the video, click here.