Gene-based personalized medicine has many possibilities for diagnosis and targeted therapy, but one big bottleneck: the expensive and time-consuming DNA-sequencing process.
Now, researchers at the University of Illinois at Urbana-Champaign have found that nanopores in the material molybdenum disulfide (MoS2) could sequence DNA more accurately, quickly and inexpensively than anything yet available.
"One of the big areas in science is to sequence the human genome for under $1,000, the 'genome-at-home,'" said Narayana Aluru, a professor of mechanical science and engineering at the U. of I. who led the study. "There is now a hunt to find the right material. We've used MoS2 for other problems, and we thought, why don't we try it and see how it does for DNA sequencing?"
As it turns out, MoS2 outperforms all other materials used for nanopore DNA sequencing – even graphene.
To read more, click here.